
Don’t Take Code from Strangers
WHITEPAPER

The world runs on code. We secure it.

An Introduction to Checkmarx Supply Chain Security

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 2

Abstract:
This white paper is designed to help organizations, management teams, security practitioners, and
developers understand dependency integrities that exist within open source code packages and why
they represent the weakest link within a software supply chain.

This white paper begins with a look at the relationship between the digital economy and open source
software (OSS), with a focus on why open source code is a popular attack vector. It then introduces
SLSA as a framework for supply chain integrity, discusses why traditional software composition
analysis is insufficient when it comes to detecting code with malicious intent, and introduces a way
forward to avoid taking malicious code from strangers.

After reading this white paper, readers will understand why an analysis of the code repository,
contributor reputation, and code behavior is imperative for uncovering compromised code
dependencies. Most important, readers will learn about the introduction of a new, innovative
Checkmarx technology that blends best-of-breed software composition analysis with a visionary
approach to detecting dependency issues.

 Available today, this technology is designed to empower organizations to manage the risks associated
with open source software and ensure software supply chain security.

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 3

Table of Contents

Abstract .. 1

The Digital Economy Runs on Open Source .. 4

Introducing SLSA: An End-to-End Framework for Supply Chain Integrity 6

Traditional Code Analysis Systems Fall Short .. 9

The Way Forward to Trust in Open Source Code Packages ... 11

Checkmarx Pushes the Boundaries of Secure Software Supply Chain Innovation13

Final Thoughts ..15

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 4

The Digital Economy Runs
on Open Source
Software is running the world – and it is everywhere.
More and more elements of major businesses and
industries are being run on software and delivered
as online services. From entertainment, retail,
financial services, and healthcare to automotive,
transportation, agriculture, and national defense
– industries across the board have experienced a
fundamental software-based transformation that is
so crucial for business longevity.

Nowhere is the link between digital transformation
and business longevity so apparent than in light
of the coronavirus pandemic. With rare exception,
operating digitally was the only way to stay in
business through mandated shutdowns and
restricted activity. Thanks to ‘Go Digital or Go Dark,’
the pandemic accelerated digital transformation
with businesses competing aggressively to be first
to market with digital products and services. Now,
as digital transformation continues to accelerate,
pressure continues to mount on developers to write
and deploy new applications and new features
faster than ever.

But perhaps ‘write’ is not the right word.

Modern applications are more often assembled
than they are written, with developers combining
multiple open source packages, along with
proprietary code, in a single application. Virtually
all contemporary, proprietary software incorporates
open source components. Items that impact
everyday life, such as automobiles and phones, to
cutting-edge artificial intelligence programs use

open source software such as the Linux kernel
operating system, Kubernetes (which powers cloud
computing), and the Apache and Nginx web servers
(which run over 60% of the world’s websites).
Recent industry research reveals that1 :

 Љ 90% of cloud servers, 82% of smartphones, and
62% of embedded systems run on open source
operating systems

 Љ More than 70% of ‘Internet of Things’ devices
use open source software

 Љ 90% of the Fortune Global 500 operate on
open source software

The value of open source software is undisputed.
But unlike proprietary software, which companies
build internally, open source code is developed
by typically unpaid developers, often as a part
of a community-driven project in which ideas
and contributions are shared. The software is
made available to the community as what are
referred to as projects or components – and
are available to anyone for free. While this
model allows for innovation to occur organically
throughout the community, it’s understood that
any updates, patches, and new releases are also
the responsibility of that volunteer community.
However, the ultimate accountability falls on those
who use open source.

This all begs the question, “How scared should we
be that so much of the software on which the world
depends is open source software?”

1Michigan Technological University, Tech Today, Open Source, October 2019.

https://www.mtu.edu/ttoday/?issue=20191022

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 5

Malicious code lurking within

The use of open source software is not new –
and neither is the presence of code published in
repositories for malicious purposes.

The prevalence of using open source software in
corporate settings has increased drastically with
the adoption of modern application development,
and with it, the use of code from projects with
less rigorous controls than were typical in the
past. Because repositories often invite users to
add updates and features, anyone – including
threat actors – can publish their own code and
contribute to an open source project.

Due to the volunteer nature of open source
communities, once a developer has been
accepted as a trusted member, his or her
activity within the codebase may not be closely
monitored. That means that an attacker could
initially make valid, useful contributions,
and then once trust and credibility has been
established, add malicious code to the codebase
unobserved. If you think this only occurs in the
movies, think again. GitHub once reported that
20 percent of the bugs within code stored on its
platform were planted by malicious actors.2

Because open source projects are built on a
foundation of community involvement and trust,
open source libraries offer threat actors a large
return on investment. The ease with which threat
actors are able to exploit code dependencies
to introduce malware and backdoors has made
software supply chain attacks a popular attack
vector. As a result, supply chain incidents
stemming from malicious actors deliberately
injecting hard-to-detect, weaponized code into
open source packages are on the rise. Industry
research bears this out. “By 2025, 45 percent of
organizations worldwide will have experienced
attacks on their software supply chains, a three-
fold increase from 2021.”3

It’s time to ask a new question. Rather than
asking how afraid should we be that the digital
economy runs on open source, the question one
should be asking is, “To what extent should we
trust that an open source code package is free of
code with malicious intent (i.e., Trojan Horses) –
and how can we ensure we don’t take code from
strangers?”

2ZDNet, Almost one in five bugs are planted for malicious purposes, Liam Tung, December 2020.
3Gartner®, "How Software Engineering Leaders Can Mitigate Software Supply Chain Security Risks", Manjunath Bhat, Dale Gardner, Mark Horvath, 15 July 2021. GARTNER
is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Code Goes Rogue in Protest
With a user base of nearly 25 million downloads
each week, Colors.js and Faker.js are two of
the most popular NPM libraries. Supporting
a number of open source projects, including
Amazon’s Cloud Development Kit, the last thing
anyone wants is for them to stop working, but
in January 2022, they did just that.

Marak Squires, author of the two JavaScript
libraries, sabotaged his work (seemingly in
protest against “Fortune 500” Companies
benefitting from free open source code)
with code that crashed tens of thousands of
JavaScript programs in one strike.

The updates produced an infinite loop that
caused dependent apps to spew gibberish,
prefaced by the words ‘Liberty Liberty Liberty.’
The update sent developers scrambling as
they attempted to fix their malfunctioning
apps. While the damage was limited to the
urgent need to fix numerous tools that became
inoperable, the event demonstrates a more
concerning problem. Just as easily, Squires
could have introduced malicious code, which
would be executed on hundreds of thousands
of machines that were known to download the
faulty version of the package.

https://www.zdnet.com/article/open-source-software-how-many-bugs-are-hidden-there-on-purpose/
https://www.zdnet.com/article/open-source-software-how-many-bugs-are-hidden-there-on-purpose/

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 6

An End-to-End Framework for
Supply Chain Integrity
With open source code repositories proving to
be a popular and reliable attack vector for threat
actors, and attacks on software systems on the
rise over the last two years, the software supply
chain has come under close scrutiny.

Looking at a typical software delivery process
from a high level, a developer sends code to a
source control repository, which initiates a build
process. The build system collects and compiles
the source code. Binaries are signed and
packaged. Lastly, the package is made available
for use by end-users or downstream projects that
incorporate the package into their software.

Because the software development and
deployment processes are complex, threat actors
can introduce malware into the development
workflow using a variety of attack methods. To
guard against the most serious supply chain
concerns and preserve the integrity of software
artifacts throughout the software supply chain,
Google launched Supply-chain Levels for
Software Artifacts (SLSA) as an end-to-end
framework in collaboration with the Open Source
Security Foundation (OpenSSF). The SLSA
framework formalizes criteria around software
supply chain integrity and assists the industry
and open source community in securing the
software development lifecycle.

SLSA is based on the fundamental principle that
all software artifacts must meet the following two
requirements:

 Љ Non-unilateral. No one person can make
changes to a software artifact anywhere
in the software supply chain without the
explicit evaluation and consent of at least
one additional ‘trusted person.’

 Љ Auditable. The software item can be
traced back to its original, human-readable
sources and connections in a secure and
transparent manner.

The SLSA framework also establishes three
trust boundaries to both encourage the right
standards, attestation, and technical controls
and to empower developers to harden a
system from threats and risks. The three trust
boundaries include:

 Љ Source integrity. Source threats include
bypassed code review and compromised
source controls system.

 Љ Build integrity. Build threats include
modified code after source control,
compromised build platform, bypassed CI/
CD, compromised package repository, and
use of a bad package.

 Љ Dependency integrity. Dependency threats
include use of a bad dependency, including
transitive dependencies

Introducing SLSA:

https://slsa.dev/
https://openssf.org/

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 7

Figure 1. Trust Boundaries in the Software Development Life Cycle

SOURCE THREATS
A Bypassed code review
B Compromised source
control system

BUILD THREATS
C Modified code after source control
D Compromised build platform
F Bypassed CI/CD
G Compromised package repo
H Using a bad package

DEPENDENCY THREATS
E Using a bad dependency

DEPENDENCY THREATS

SOURCE THREATS BUILD THREATS

DEVELOPER Source

Dependencies

Package CONSUMER

 Љ Software Development Life Cycle (SDLC)
controls. In most organizations, SDLC is a
well-defined process that integrates security
controls. Organizations, for example, have
control over their source code and a degree
of control over the components and tools
used during the build process. In addition,
parts of the software supply chain have
some sort of security or mitigation actions
that can be applied, such as enforcing 2FA
to GitHub, monitoring the build server, and
protecting the internal repositories.

 Љ Lack of standards for external code.
Open source communities do not enforce
standards for code published to repositories.
Because there are no standards with external
code packages, you can’t assume open
source contributors adhere to standards or
certify their code.

 Љ Difficult-to-spot techniques. Dependency
confusion attacks make use of difficult-
to-spot strategies such as vulnerabilities

in package manager configurations and
operations that facilitate repository jacking.

 Љ Transitive dependencies. Transitive
dependencies, where a package calls a
package, which calls a package, which
calls a package, and so on, may represent
hidden risk. A piece of software, for example,
can be hundreds of layers deep with each
component having dependencies. If an
attacker can compromise a downstream
dependency, they will have achieved the
critical step of initial access.

 Љ Lack of visibility into flawless code.
Organizations have almost no control over
or visibility into the external code packages
chosen to be integrated into software
systems. Hidden among the masses of
Python modules, Node.js packages, and .NET
libraries are an untold number of libraries
that may be securely coded and elegantly
implemented, but also very malicious at the
same time.

Dependency integrity is the weakest link
No chain is stronger than its weakest link, and this rule carries into the software supply chain. Of
the three trust boundaries, dependency integrity presents the weakest link in the software supply
chain for several reasons:

A B C D HF G

E

Build

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 8

Sneaking malicious software into
existing codebases isn’t new, but library
names that contain a word that can have
multiple spellings make it all too easy.
Such was the case with colorama and
colourama.

Colorama is a legitimate Python package
that translates ANSI color commands
to the Windows terminal. It’s a fairly
popular library, and with well over two
thousand stars on GitHub, it has a good
reputation. Colourama, on the other
hand, is a form of typosquatting that
was deliberately made to trick British-
English users looking for colorama.

Financially motivated, it copied the
original code and added malware that
hijacked infected users’ Windows
operating system clipboard, where it
would scan every 500ms for a Bitcoin
address. When found, it would replace
it with attacker’s own Bitcoin address
to redirect Bitcoin payments/transfers
made by an infected user. Because the
VBscript created persistence through
a registry entry, special attention was
needed to completely uninstall the
colourama package and VBscript.

When Good Software Goes
Bad: Colorama’s Evil Twin

 Љ Contributor rage. Software systems that
rely on open source code packages may
be at the mercy of dependable code that
suddenly goes rogue, becoming annoying
at best and devastating at worst. In
January 2022, for example, Marak Squires
introduced changes that rendered his
popular colors and faker NPM code
packages useless.

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 9

Traditional Code Analysis
Systems Fall Short

Software composition analysis
(SCA) Traditional SCA products analyze
applications, generally during the development
process, to detect embedded open source
software and, sometimes, other third-party
components. Software composition analysis
tools can be relied upon to identify known
vulnerabilities, such as out-of-date libraries that
have available security patches, and to determine
the license used to distribute a software package
in order to aid in assessing any legal risks.

When it comes to identifying malicious code
dependencies, traditional SCA is insufficient
because it takes a reactive approach versus a
proactive approach to identifying risk. This is
because SCA relies on someone else to find the
software vulnerability, publish it, and issue an
alert to upgrade or patch your system. SCA tools
operate by determining whether there is a known
vulnerability or CVE and whether there is a more
recent version of the code package. If no one
finds the problem, it results in a long mean time
to detection (MTTD), with a worst-case scenario
where attacks or a vulnerability could lie dormant
for months.

One recent example of a classic open source
weakness was the discovery of the Log4j
vulnerability in early December 2021. Log4j was
found to have a zero-day vulnerability that had
existed since 2013 and which allows attackers
to take control of a system, steal data, upload
malware, and even mine cryptocurrency.

Static application security
testing (SAST) Static application security

testing solutions analyze an application’s

source, bytecode, or binary code for security
vulnerabilities, typically at the programming and/
or testing phases of the software life cycle.

Traditional SAST is an effective way to detect
bugs in code, but is an ineffective way to detect
perfect, albeit malicious, code that an attacker
has injected into a code package. The code will
appear to be legitimate on the surface – only
when you crack the code open do you see what
the code is really doing. Another drawback with
SAST is the fact that SAST is not run against
external code. Organizations only run SAST on
their own code because it’s not the organizations
responsibility to fix bugs in dependencies.

Dynamic application security
testing (DAST) Dynamic application
security testing solutions analyze applications
in their dynamic, running state during testing
or operational phases. DAST simulates attacks
against an application (typically web-enabled
applications and services) and analyzes the
application’s runtime reactions to determine
whether it is vulnerable.

The drawback with DAST is that it is intended
to determine whether a developer made a
coding mistake that introduced a vulnerability.
It was never built to recognize and evaluate the
reputation of a developer contributing code or
reputation factors of open source code. Correctly
coded malicious code will be recognized as
a legitimate process. In addition, similar to
SAST, organizations only run DAST to find
vulnerabilities in their own internal code.

Open source code accounts for the majority of code in today’s modern applications. The unfortunate
reality with open source dependencies is that along with the benefits come increased, undetectable
risks. To avoid becoming a victim (or unsuspecting accomplice) of a software supply chain attack,
detecting and defending against dependency-based attacks is vital. That, however, is easier said than
done as traditional code analysis solutions to detect malicious code dependencies fall short.

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 10

Popular NPM Package Hijacked to Publish Crypto-Mining Malware

In October 2021, a threat actor gained access to
the NPM user account of one of the owners of the
popular package UAParser.js. The attack group
published new versions of the package (0.7.29,
0.8.0, 1.0.0), which included a few malicious
files, and an additional ‘preinstall’ script in the
‘scripts’ section in the package.json file. This
new ‘preinstall’ script was intended to trigger the
execution of the malicious files upon package
installation. The attacker’s final goal was to infect
package users with both a crypto miner and
credential stealer malware.

This attack was reported by a vigilant user on the
project’s repository on GitHub, preventing what
could have been the infection of millions of users.

Using the same techniques, and much of the
same code, a similar attack occurred in early
November on two other highly popular packages:
‘coa’ and ‘rc.’ Both packages were infected in
a similar manner to the previous UAParser.js
incident by an account takeover of the packages’
owners. In this case, a bug in the attacker’s
code that prompted an error upon installation
facilitated early detection and mitigation.

In both cases, the suspicious activity was noticed
by chance, or at least not by any dedicated
mechanism. Without a way to detect the
activity, the next potential account takeover and
subsequent infection has a good chance of going
unnoticed for a relatively long period of time, and
possibly causing severe damages.

https://checkmarx.com/blog/uaparser-js-attack-preparations/
https://checkmarx.com/blog/attackers-write-bugs-as-well/

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 11

The Way Forward to Trust in
Open Source Code Packages

 Љ Community health and wellness. Analyzing
the health and wellness of a code repository
provides insight as to how trustworthy the
code packages are and how often an open
source package is updated and maintained.
Elements to be considered include:

 + How vibrant is the community?

 + Does the community have a lot of
members?

 + How active is the community?

 + Do they actively commit code?

 + Who can commit code?

 + Can anyone commit code? Are outside
contributions allowed?

 + What are the safety features of the
repositories?

 + Who checks the code and how many
reviewers are involved?

 + How responsive is the community to
issues and do they have processes in
place to resolve issues? What is the
mean time to resolve issues, and do they
publish metrics?

 Љ Contributor reputation. Looking at who
contributes the code, other packages
they may have created, and their overall
online presence can provide clues as
to the potential intent of their coding
activities. Similar to a credit score used by
institutions to determine credit-worthiness

of individuals, insight into a contributor’s
activities and reputation provides a trust
score that can be used in determining
whether to use a contributor’s code
package. Elements to be considered include:

 + Who is the person committing the code?

 + Is this person known?

 + Has this person been seen before?

 + Have they previously committed to any
open source projects?

 + Is this the first time the person is
committing to a project?

 Љ Package ecosystem. Beyond scrutinizing
the health and wellness of the community
and the reputation of the contributor, it’s
important to consider the ecosystem in
which the package operates. Evaluating
what a piece of code does, what processes
it creates, what ports it opens, and what
connections it tries to make are all critical
indicators of a package’s intent. Elements to
consider include:

 + Is the package name similar to another
popular package?

 + Is the version number unusually high?

 + Does the code try to execute anything?

 + Is the code running shell commands?

Is the code trying to extract anything from the
system within which is it running?

One of the biggest challenges for developers is the need to make informed choices about the open
source software they use in their own software systems. Determining whether external code is
malicious can be difficult because developers have virtually no visibility into the risks associated with
open source code packages. Faced with having to decide whether to ‘take it or leave it,’ developers
need a way to identify malicious dependencies in code packages so that they can make wise, informed
choices.

Detecting supply chain attacks in code packages
To avoid taking malicious code from strangers, organizations need a proactive way to vet the open
source code for malicious dependencies. Gaining trust in open source code requires analysis of the
health and wellness of the community, reputation of the contributor, and behavior of the code package.

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 12

Did you know that in March 2016, the internet
almost came crashing down? It began with a
dispute between developer Azer Koçulu and
messaging company Kik over a module Koçulu
was working on, also called kik.

The company wanted him to change the name
of his module so they could use the name kik
for their own product. When Koçulu declined,
NPM became involved in the argument. Instead
of siding with Koçulu, NPM agreed with the
company, rationalizing that allowing Kik the
company to use the package name kik would
make more sense. Deeply angered by the
decision, Koçulu deleted all 273 modules he'd
registered on NPM. Because all the focus was

on kik, no one considered the ramifications of
deleting the left-pad module.

Koçulu's simple, 11-line-long 'left-pad' module
was heavily relied upon by the programming
community, including companies such as
Facebook, Netflix, and Airbnb. Thanks to
caching, the vast majority of internet users didn’t
experience any downtime and wouldn't have
noticed anything out of the ordinary. But for
web developers, it was a temporary nightmare.
Faced with thousands of builds failing each
second, NPM took unprecedented action and
re-published the original 'left-pad' module from a
back-up.

Just 11 Lines of Deleted Code Nearly Broke the Internet

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 13

Checkmarx Pushes the
Boundaries of Secure Software
Supply Chain Innovation

Checkmarx elevates the standard
for Software Composition
Analysis
Checkmarx’s approach to software composition
analysis addresses these issues by providing
accurate, relevant, and actionable open
source risk insight, backed by a dedicated
open source security research team, and
seamlessly integrated throughout the SDLC.
Checkmarx SCA™, which comes as a standalone
solution, and is a component of the Checkmarx
Application Security Testing Platform, allows
developers to build software with confidence
using a mix of custom and open source
code. Checkmarx SCA and developer-centric
Application Security Testing (AST) solutions
combined do more than just tell you that you
may have a security problem. They help you
understand the exact nature of the problem,
assign it a priority level, and determine the most
efficient method for remediating it.

Checkmarx goes beyond
traditional vulnerability analysis
Checkmarx simplifies the process of uncovering
compromised dependencies by extending
Checkmarx SCA with unique, innovative
technology specifically designed to identify
supply chain attacks. By integrating machine-
learning-driven behavioral analysis and
contributor-reputation indicators alongside
SCA’s curated threat feed, independent security
research, and market-leading capabilities like
Exploitable Path, Checkmarx provides a unified
view into the risk, reputation, and behavior of
open source packages and delivers a holistic,
unified, and effective approach for managing
the risks associated with open source code
packages.

Open source code presents myriad benefits;
however, the potential for dependency integrity
to be compromised is an ever-present threat.
Developer teams must therefore operate with the
proactive assumption that all code may have been
maliciously manipulated and apply a zero-trust
security mindset to all external code packages
being integrated into modern applications.

When an open source dependency is discovered
to have a known vulnerability or have been
deliberately compromised, it needs to be found
and fixed immediately. Development teams could
try to manage this risk by manually poring over
vulnerability databases and matching alerts
with dependencies in use, but doing this for
the hundreds of code packages in your supply

chain is unsustainable – and creating your own
risk analysis of the thousands of open source
contributors is impractical.

In today’s rapid software development lifecycle,
development teams can’t afford to have security
testing slow them down and security teams can’t
afford to have vulnerable software in production.
As organizations employ modern application
development approaches like Agile and DevOps
to ensure ever-more aggressive release cycles, the
ability to deliver insight and results into the hands
of the people who need it, in the manner in which
it is most helpful to them without impeding their
productivity, becomes a fundamental development
requirement.

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 14

Uncover compromised
dependencies with Supply Chain
Security
Checkmarx SCA with Supply Chain Security
(SCS) offers a more comprehensive approach to
preventing supply chain attacks and securing
open source usage by enabling developers
to perform vulnerability, behavioral, and
reputational analysis from a single, integrated
platform. By natively integrating advanced
behavioral analysis into SCA, Checkmarx
provides developers with a streamlined,
frictionless user experience to enhance their
organization’s supply chain security.

Checkmarx Supply Chain Security enables
organizations to accelerate modern application
development using open source software safely
and securely through a full suite of critical
capabilities:

 Љ Health and Wellness and Software Bill of
Materials (SBOM): Provides knowledge of
the open source package and community,
combined with SBOM creation.

 Љ Malicious Package Detection: Detects
dependency confusion, typosquatting,
chainjacking and other malicious activities
and packages.

 Љ Contributor Reputation: Restores trust in
the provenance of open source packages
by eliminating the need to manually analyze
contributor activity across all projects that
could impact an organization.

 Љ Behavior Analysis: Incorporates static
and dynamic analysis to observe how
the code runs. Our detonation chamber
provides deep analysis of code packages
and removes ambiguity to defend against
stealthy threats.

 Љ Continuous Results Processing: Delivers
constant updates on our research and
threat hunting, maintaining a reputation and
vulnerability database for customer usage.

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 15

Open source software has facilitated the
acceleration of application development
and shortened development cycles. As with
any new advancement in technology, there
can be risks associated with open source
components, which organizations must identify,
prioritize, and address. Of the three trust
boundaries established by the SLSA framework,
dependencies in open source code packages are
by far the weakest link in the software supply
chain. When an open source dependency
integrated into your application is discovered
to have a known vulnerability, you could try to
manage the risk by using vulnerability databases
and matching dependencies against alerts. But
the better solution is to avoid incorporating
compromised dependencies from the start.

When it comes to selecting open source code
packages, don’t take code from strangers.
Developers cannot check everything manually.
By using an automated, multi-phase analysis to
gain visibility into the health of a code package,
developers can select open source packages
more wisely and code at speed.

Checkmarx SCA with Supply Chain Security
sets a new standard for software composition
analysis solutions. Without the innovative
approach spearheaded by the Checkmarx SCS
team, organizations have little if any visibility into
the overall safety and potential risk of their open
source supply chains.

To learn more about Checkmarx SCA with Supply
Chain Security, please request a demo here.

Final Thoughts

About Checkmarx
Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and
simple for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing
leader, we provide the industry’s most comprehensive solutions, giving development and security teams unparalleled
accuracy, coverage, visibility, and guidance to reduce risk across all components of modern software – including
proprietary code, open source, APIs, and Infrastructure as code. Over 1,675 customers, including 45% of the Fortune
50, trust our security technology, expert research, and global services to securely optimize development at speed
and scale. For more information, visit our website, check out our blog, or follow us on LinkedIn.

© 2022 Checkmarx Ltd. All rights reserved. Checkmarx is a registered trademark of Checkmarx Ltd. All other marks and trade names mentioned
herein belong to their respective owners. Checkmarx reserves the right to modify, transfer, or otherwise revise this publication at its sole
discretion and without notice.

https://checkmarx.com/request-a-demo/

WHITEPAPER | DON’T TAKE CODE FROM STRANGERS | 16WHITEPAPER | AN INTRODUCTION TO OPEN SOURCE SUPPLY CHAIN ATTACKS | 1

Checkmarx at a Glance

1,675+
Customers in 70 countries

30+
Languages & frameworks

750
Employees in 25 countries

500k+
KICS downloads in 2021

45%
of the Fortune 50 are customers

The world runs on code. We secure it.

